Bunco Simulator

Diff

Differences From Artifact [481d05]:

To Artifact [dae914]:


1
2

3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10


+







# Test
import csv, random, sqlite3
from statistics import median

teammate_lookup = { 0: 2, 1: 3, 2: 0, 3: 1 }

fuzzydie_holder = 'x'

def TurnInProgress():
    return -1
45
46
47
48
49
50
51









52
53
54
55
56
57
58
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68







+
+
+
+
+
+
+
+
+







        self.round_scores.append(0)
        self.round_roll_counts.append(0)
        self.personal_roll_scores.append(0)
        self.round_bunco_counts.append(0)
        self.round_wins.append(0)
        self.turn_progress = 0
        self.current_streak = 0
    
    def average_contrib_pct(self):
        pcts = []
        for n in range(len(self.round_scores)):
            if self.round_scores[n] > 0:
                pcts.append(self.personal_roll_scores[n] / self.round_scores[n])
            else:
                pcts.append(0)
        return sum(pcts) / len(pcts)

    def score_last_roll(self):
        desired_num = Game.current_round() % 6
        desired_num = 6 if desired_num == 0 else desired_num
    
        roll_score = 0
        
325
326
327
328
329
330
331









332
333
334
335
336
337
338
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357







+
+
+
+
+
+
+
+
+







        cls.cur_round += 1

    def print_status(self):
        for n, table in enumerate(self.tables):
            print(f"== TABLE {n+1} == Team 1:{table.team1_score} pts, Team 2:{table.team2_score} pts")
            for player in table.players:
                print(f"    {player.name} {player.round_scores[Game.current_round() - 1]} points, streak {player.max_streak} buncos {sum(player.round_bunco_counts)}")
    
    def average_total_score(self):
        all_scores = [sum(p.round_scores) for p in self.players]
        return sum(all_scores) / len(all_scores)

    def median_total_score(self):
        all_scores = [sum(p.round_scores) for p in self.players]
        
        return median(all_scores)

    def prep_next_round(self):
        # losers from head table move to next table
        headtable_losers = self.tables[0].losers()
        log_table_move(headtable_losers, "lost", self.tables[0], self.tables[1])
        round_winners = self.tables[1].swap_for_winners(headtable_losers)